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The wakes of bluff objects and in particular of circular cylinders are known to 
undergo a ‘fast ’ transition, from a laminar two-dimensional state a t  Reynolds 
number 200 to a turbulent state a t  Reynolds number 400. The process has been 
documented in several experimental mvestigations, but the underlying physical 
mechanisms have remained largely unknown so far. In this paper, the transition 
process is investigated numerically, through direct simulation of the NavierStokes 
equations at  representative Reynolds numbers, up to 500. A high-order time- 
accurate, mixed spectral/spectral element technique is used. It is shown that the 
wake first becomes three-dimensional, as a result of a secondary instability of the 
two-dimensional vortex street. This secondary instability appears at a Reynolds 
number close to 200. For slightly supercritical Reynolds numbers, a harmonic state 
develops, in which the flow oscillates at  its fundamental frequency (Strouhal 
number) around a spanwise modulated time-average flow. In the near wake the 
modulation wavelength of the time-average flow is half of the spanwise wavelength 
of the perturbation flow, consistently with linear instability theory. The vortex 
filaments have a spanwise wavy shape in the near wake, and form rib-like structures 
further downstream. At higher Reynolds numbers the three-dimensional flow 
oscillation undergoes a period-doubling bifurcation, in which the flow alternates 
between two different states. Phase-space analysis of the flow shows that the basic 
limit cycle has branched into two connected limit cycles. In physical space the period 
doubling appears as the shedding of two distinct types of vortex filaments. 

Further increases of the Reynolds number result in a cascade of period-doubling 
bifurcations, which create a chaotic state in the flow at a Reynolds number of about 
500. The flow is characterized by broadband power spectra, and the appearance 
intermittent phenomena. It is concluded that the wake undergoes transition 
turbulence following the period-doubling route. 

O f  

to 

1. Introduction 
The vortex wake of a two-dimensional circular cylinder has become the canonical 

problem for transition in open flows because, in part, the transition process depends 
on one parameter only, namely the Reynolds number, Re, of the flow. The transition 
process in the wake as a function of the Reynolds number can be summarized as 
follows. At Reynolds number higher than 40 the flow bifurcates to a periodic 
oscillation, creating a laminar vortex street. Subsequently, the wake undergoes a fast 
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FIQURE 1 .  Time-history of the streamwise velocity component at point PI(% = 2.12; y = 0.45) in 
the near wake (Re = 500 ; two-dimensional simulation). 

transition, which starts at Re around 200 and becomes turbulent at Re around 400 
(Bloor 1964). No explanation has been offered so far for this transition. The 
development of computational techniques, as well as of theoretical concepts in 
hydrodynamic stability and turbulence, offer today the prospect of revisiting this 
problem and analysing it in much greater detail. The turbulent wake is achieved at  
relatively low Reynolds number, at which the flow field can accurately be resolved 
given the presently available computational resources. The main issues here seem to 
be whether this transition follows some of the universal routes to chaos, and how the 
universal behaviour is related to the physics of the specific problem. 

The f i s t  flow bifurcation, which creates the vortex street, can be reliably analysed 
using two-dimensional simulations, as has been demonstrated by several com- 
putational studies in the past (Gresho et al. 1984; Karniadakis, Bullister & Patera 
1985; Braza, Chassaing & Ha Minh 1986). The applicability of two-dimensional 
simulations to higher Reynolds number, and more specifically to Reynolds number 
in the aforementioned transitional regime, seems questionable however, since 
experiments have reported strongly three-dimensional behaviour after the Reynolds 
number exceeds a value of about 200 (Williamson 1988). In  order to investigate 
whether any features of the transition process can be captured by two-dimensional 
simulations, we computed the two-dimensional flow past a circular cylinder at 
Re = 500. A spectral element method has been employed, similar to the one used in 
Karniadakis & Triantafyllou (1989). A time trace of the streamwise velocity 
component in the near wake (figure 1) shows that a time-periodic flow state is 
established. Thus, although the numerical simulation captures the large features of 
the flow, its results are in qualitative disagreement with experimental observations 
(Bloor 1964), which, at this Reynolds number, show a ‘turbulent’ behaviour. This 
suggests that the transition process is caused entirely by three-dimensionality, and 
we have to resort to three-dimensional computations to study the transition process. 
Some corroborating evidence can be found in the experimental work of Hammache 
& Gharib (1989), who have succeeded in delaying transition in the wake of a circular 
cylinder through a novel design of end conditions, which suppresses three- 
dimensional effects. 
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It appears, however, that independently of end effects, three-dimensionality is an 
unavoidable state of even nominally two-dimensional wakes, once a certain critical 
Reynolds number is exceeded. Recent experimental results (Williamson 1988, 1989) 
place this value around 180, and numerical results (Karniadakis & Triantafyllou 
1990) confirm the conclusion. The appearance of three-dimensionality is by itself a 
fascinating problem and has recently attracted a lot of attention (Meiburg & 
Lasheras 1988; Lasheras & Meiburg 1990; Williamson 1988, 1989; Hammache & 
Gharib 1989; Triantafyllou 1990; Kaiktsis, Karniadakis & Orszag 1991), but its 
connection with the transition to turbulence seems to be the most important reason 
for studying it. Resolving the issues that are involved here requires the aid of 
instability theory, vortex dynamics, dynamical systems theory, and the development 
of reliable and efficient numerical codes based on high-order-accurate schemes for 
simulating highly unsteady three-dimensional flows. There is certainly a higher 
degree of complexity involved in three-dimensional flows ; strong mixing and chaos, 
for example, can also be observed in two-dimensional flows, but for stationary flows 
exponential stretching of fluid elements can only occur in three-dimensions (see also 
Arnol’d 1972). 

It is widely recognized that the appearance of a secondary instability is one of the 
main mechanisms through which a two-dimensional flow becomes three-dimensional. 
The secondary instabilities operate on two-dimensional waves of finite amplitude , 
rather than some initial stationary state, and induce an exponential growth rate 
through the simultaneous action of vortex stretching and tilting. This scenario was 
suggested by Pierrehumbert & Widnall (1982) for free shear layers, and Orszag & 
Patera (1983) for several simple-geometry wall-bounded flows. More recently, 
Pierrehumbert (1986) and Bayly (1986) have proposed that short-wavelength 
secondary instabilities of inviscid vortices are universal, and constitute the 
mechanism of energy transfer from large to small scales. Comprehensive reviews of 
the existing work on secondary instabilities can be found in Bayly, Orszag & Herbert 
(1988), and Herbert (1988). The presence of secondary instabilities in wall-bounded 
flows with complex geometry and the existence of stable tertiary states have been 
demonstrated numerically by Karniadakis & Amon (1987), and Amon & Patera 
(1989), and more recently by Kaiktsis et al. (1991). 

The connection, between the secondary instability mechanism and the appearance 
of three-dimensionality in wakes has not been so far established, however. What 
distinguishes wakes from wall-bounded flows, and also from other free shear flows, is 
the presence of the vortex street, which for a small range of the Reynolds number 
(roughly 40 to 200) remains two-dimensional, and persists as the primary feature of 
the flow even in the turbulent regime. It has been well established in recent years 
that the vortex street is the nonlinear evolution of the absolute instability mode of 
the time-average flow in the wake (see among others, Koch 1985; Triantafyllou, 
Triantafyllou & Chryssostomidis 1986; Monkewitz & Nguyen 1987 ; Unal & Rockwell 
1988; Hanneman & Oertel 1989; Karniadakis & Triantafyllou 1989; Strykowsky & 
Sreenivasan 1990). It is natural therefore to inquire first whether the absolute 
instability of the two-dimensional time-average flow can, above a certain Reynolds 
number, take the form of a three-dimensional instability mode, and so explain the 
onset of three-dimensionality. 

A recent investigation has shown however (Triantafyllou 1990) that the absolute 
instability mode can become three-dimensional only if the time-average flow itself 
becomes three-dimensional. Thus, in two-dimensional geometries, three-dimen- 
sionality can only be caused by the appearance, above a certain Reynolds number, 
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of a secondary instability mechanism, which acts on the saturated state of the 
primary two-dimensional instability. The resulting three-dimensional pattern also 
creates (through the action of the Reynolds stresses) a spanwise modulation in the 
time-average flow. This scenario is supported by the numerical simulations of 
Karniadakis & Triantafyllou (1990), who have studied the evolution of three- 
dimensional noise in the wake of a two-dimensional cylinder a t  Reynolds numbers 
close to 200. The main finding of that work is that noise maintains its three- 
dimensionality above a Reynolds number of approximately 175. Below this Reynolds 
number, the wake always returned to its two-dimensional state. However, the three- 
dimensional state was found to be a harmonic one, contrary to what has been 
observed in other secondary instabilities. This shows that there is an important 
difference between the secondary instability of wakes and other (primarily wall- 
bounded) flows, in that it results in a soft loss of stability of the two-dimensional flow. 
Additional bifurcations have to take place before the wake reaches a turbulent state. 

The purpose of this paper is to perform a numerical study of the transition process 
in the wake of bluff objects. An extension of the spectral element methodology in 
three dimensions is introduced, where we employ mixed Fourier/Legendre 
expansions in the spanwise direction. A similar approach was employed successfully 
in studying turbulent channel flow a t  modest Reynolds numbers in Karniadakis 
(1989a, b ) ,  and recently in simulating turbulent flow over riblet-mounted surfaces 
(Chu, Henderson & Karniadakis 1991). The paper is organized as follows. In $2, the 
formulation of the problem and the numerical procedure are described. In $3 the 
onset of three-dimensionality is analysed as a secondary instability phenomenon. In 
§$4 and 5 ,  the successive bifurcations of the three-dimensional wake are analysed as 
a function of the Reynolds number and the transition to a chaotic state is discussed. 
The conclusions are summarized and discussed in §6. 

2. Formulation 

under the incompressibility condition : 
We consider Newtonian fluids governed by the Navier-Stokes equations of motion 

ao VP 
At P 
-+N(u) = --+Re-'V2u in 52, 

V - u = O  in 52, (1b)  

where u is the velocity field ( u ( x , t )  = (u,v,w)),  p is the static pressure, and the 
Reynolds number is defined as Re = Um(2R)/v where U ,  is the free-stream velocity, 
R is the cylinder radius, v is the kinematic viscosity, and p is the fluid density. Here 
N(u") = ~[u" .Vv"+V. (un .vn) ]  represents the nonlinear contributions written in 
skew-symmetric form for aliasing control (Horiuti 1987). For future use we also 
define the Strouhal number St = f ( 2 R ) / U , ,  wherefis the frequency of the oscillation. 

Numerical solution of the above system of equations will be obtained in the three- 
dimensional domain 52 defined by the cylinder geometry in figure 2a, b. The cylinder 
has a radius R = 1 in non-dimensional units. The spanwise z-direction is homogeneous 
and thus periodic boundary conditions can be assumed in that direction at a distance 
L,. A uniform profile U ,  = 1 is prescribed upstream at a distance Xi = 6, while mixed 
Neumann/viscous-sponge boundary conditions (Tomboulides, Israeli & Karniadakis 
1991) are prescribed a t  the outflow ; these conditions eliminate spurious numerical 
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FIGURE 2. (a) A skeleton of the computational domain and geometry definitions. (b) A two- 
dimensional projection of the domain showing the spectral element discretization (domain D J .  
(c) Spectral element mesh corresponding to  the large domain ,!Il. 

instabilities a t  the downstream boundary even at  very high Reynolds number and 
provide better accuracy than the previously employed outflow boundary conditions 
(Karniadakis & Triantafyllou 1989). 

Taking into account the homogeneity of the geometry in the spanwise z-direction 



6 G .  E .  Karniadakis and G .  S. Triantafyllou 

a significant simplification can be achieved if Fourier expansions are employed to 
represent data and field variables in that direction. A similar approach used in 
Karniadakis (1989a, b )  and Chu et al. (1991) proved very efficient in direct 
simulations of turbulent flows in complex geometries. The dependent variables, for 
example, can then be represented as 

where the spanwise wavenumber is defined as p = 21t/L,, and is typically selected on 
the basis of two-point correlations. Here we choose L, = R, 21t which corresponds to 
p = 2,1,  respectively. This value of the spanwise length is close to the value used in 
direct simulations of turbulence in smooth channel flows. Unfortunately, there are no 
definite experimental results for spanwise correlations of cylinder wakes at  low 
Reynolds number to justify our selection (see also 96). 

Introducing now the Fourier expansions (2) into (la) and taking the Fourier 
transform of (1 a) (or equivalently following a Galerkin projection with test functions 
$z = e-iBmz) we arrive at the equivalent of (1 a) discrete in z in the form 

- 
w * v m  = 0 

Here we have introduced the operators 9 
in SZ,. 

and V:y defined as 

a 2  a 2  ViY = -+- 
a2x a2y' 

and F, is the m-component of the Fourier transform of the nonlinear terms. The 
computational domain SZ, is simply an ( x ,  y)-plane of the domain SZ, and thus here 
all Q, are identical (see figure 2b). A similar approach has been developed recently 
for axisymmetric geometries, where Fourier expansions are employed in the 
azimuthial direction ; details of this implementation can be found in Tomboulides 
(1992). 

Before we proceed with the spatial discretization in the ( x ,  y)-plane for each 
Fourier mode m of ( 3 )  we consider in the next subsection their time-discretization. 

2.1. Semi-discrete formulation 
The time-discretization of the governing equations ( 1 )  employs a high-order splitting 
algorithm based on mixed stiffly stable schemes (Karniadakis et al. 1991; 
Tomboulides, Israeli & Karniadakis (1989). Considering first the nonlinear terms we 
obtain for each Fourier component 

and ag, pg are implicit/explicit weight-coefficients for the stiffly stable scheme of 



Three-dimensional dynamics in the wake of bluff bodies 7 

order J (see Karniadakis et al. 1991). The next substep incorporates the pressure 
equation and enforces the incompressibility constraint : 

6,-9,- - 
-- - Vp%+," 

At 
* A  

V.6, = 0. ( 5 4  
Finally, the last substep includes the viscous corrections and the imposition of the 
boundary conditions, i.e. 

v o =  uro and v , = O  Vm=kO, ( 5 4  

where yo is a weight coefficient of the backwards differentiation scheme employed 
(Karniadakis et al. 1991), and vr, is the prescribed velocity on the boundary To. 

The above time treatment of the system of equations (3) results in a very efficient 
calculation procedure as it decouples the pressure and velocity equations as in 
(5b, c) and (5d) respectively. In  addition, it eliminates entirely the so-called time- 
splitting errors that result to non-zero divergence at  Dirichlet boundaries 
(Tomboulides et al. 1989). As regards time accuracy of this splitting scheme, a key 
element in this approach is the specific treatment of the pressure equation (5b, c), 
which can be recast in the form 

[V:, - m"] p%+," = V * - (2) 
along with the consistent high-order pressure boundary condition (see Karniedakis 
et al. 1991) 

where n denotes the unit normal to the boundary r,. The resulting scheme provides 
accuracy of order J in time, in contrast to the classical splitting scheme where only 
first-order accuracy is achieved irrespective of the integration schemes involved at 
each substep. 

Equation ( 6 )  is a Helmholtz equation for the pressure mode p;+l; for m = 0 the 
pressure matrix is singular, indicative of the existence of one hydrostatic mode, while 
non-zero wavenumbers correspond to a non-singular pressure matrix (Karniadakis 
1 9 8 9 ~ ) .  Let q5 = p:+l and g(x)  = V -  (&/At) ,  then ( 6 )  is a standard Poisson equation 
of the form 

along with a zero Neumann condition (for simplicity) replacing equation (6b) .  As this 
latter equation dictates the continuity requirements for the solution, we briefly 
review its spatial discretization in the next section. 

V2# = g(x)  (7) 

2.2. Spectral element methodology 
The spatial discretization of (5a), ( 5 d ) ,  and (6 )  is obtained using the spectral element 
methodology (see, for example, Petera 1984, Karniadakis et al. 1985, Maday & 
Patera 1989 and Karniadakis 1989a, b ;  a review of recent advances of the method 
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is contained in Karniadakis et al. 1991 b) .  Here we follow two different approaches. 
I n  the first, the formulation developed in the previous section is followed and thus 
two-dimensional spectral elements are considered in discretizing the (z, y)-planar 
domains a. Alternatively, a three-dimensional implementation of (5 ) ,  (6) is also 
possible where the domain SZ is discretized using general hexaedra elements as in 
Karniadakis et al. (1985) and Maday & Patera (1989). This latter approach although 
less efficient for the current simulation is nevertheless more general as it also 
accommodates the case of non-periodic boundary conditions in the spanwise 
direction and has becn used primarily in the current work. More specifically, in the 
standard spectral element discretization the computational domain r, or 51 is 
broken up into several quadrilaterals in two dimensions or general brick elements in 
three dimensions, which are mapped isoparametrically to canonical squares or cubes 
respectively. Field unknowns and data are then expressed as tensorial products in 
terms of LegendreLagrangian interpolants. The final system of discrete equations 
in then obtained via a Galerkin variational statement. 

To illustrate the spectral element methodology in more detail let us first consider 
the model equation, (7),  which represents the elliptic contributions of the governing 
equations. Consideration of this model equation rather than the hyperbolic equation 
(5a)  corresponding to the convective terms suggests a ‘layered ’ approach, according 
to  which the discretizations and solvers are constructed on the basis of a hierarchy 
of nested operators proceeding from the highest to  the lowest derivatives. This 
approach is motivated by the fact that  the highest derivatives in an equation govern 
the continuity requirements, conditioning, and stability of the system. 

For simplicity we only present the two-dimensional spectral element equations, as 
the Galerkin spectral formulation in the spanwise direction can be found in Gottlieb 
& Orszag (1977). In  addition, we assume homogeneous boundary conditions q5 = 0 on 
r. Equation (7)  can then be discretized using planar spectral elements in the (z,y)- 
plane. If we define H i  as the standard Sobolev space that contains functions which 
satisfy homogeneous boundary conditions, and introduce test functions $ E H i ,  we 
can write the equivalent variational statement of (7) as 

The spectral element discretization corresponds to numerical quadrature of the 
variational form (8) restricted to the space X, c HA. The discrete space X, is defined 
in terms of the spectral element discretization parameters (K,N,,N,), where K is the 
number of ‘spectral elements’, and Nl ,N2  are the degrees of piecewise high-order 
polynomials in the two directions respectively that fill the space X,. By selecting 
appropriate Gauss-Lobatto points E& and corresponding weights p p g  = p p  pq, 
equation (8) can be replaced by 

Here JEg is the Jacobian of the transformation from global to local coordinates 
(z, y )  =s ( r ,  s), for the two-dimensional element k .  The Jacobian is easily calculated 
from the partial derivatives of the geometry transformation rx, ry ,  sx, sy, The next 
step in implementing (9) is the selection of a basis which reflects the structure of the 
piecewise smooth space X,. We choose an interpolant basis with components defined 
in terms of Legendre-Lagrangian interpolants, ht(r5) = 8,. Here, r5 represents a local 
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coordinate and Sij is the Kronecker-delta symbol. It was shown in Patera (1984) and 
Rsnquist (1988) that such a spectral element implementation converges spectrally 
fast to the exact solution for a fixed number of elements K andN,, 2, + a0 , for smooth 
data and solution, even in non-rectilinear geometries. 

Having selected the basis, we can proceed in writing the local to the kth element 
spectral approximations for q5k, (or $”) as follows: 

q5k = &nhm(r)hn(S) Vm, n ~ ( 0 ,  - * * , N l ) ,  (0, ***,N2), 

where q5Ln is the local nodal value of q5. The geometry is also represented via similar 
type tensorial products with same-order polynomial degree, i.e. 

Here x i n ,  y i n  are the global physical coordinates of the node mn in the k element. 
This isoparametric mapping leads to a compatible pressure formulation without the 
presence of spurious modes due to the ellipticity property of the pressure equation 
(Karniadakis 1989a). 

We now insert (10) into (9) and choose test functions @mn which are non-vanishing 
at only one global node to arrive at the discrete matrix system. This procedure is 
straightforward and here we cite only the final matrix system, 

(114 k B k  B k  k 
K Nl Na K NI Na 

C’ 22 C. (P$2n+P82n)$kn=-Cf C C J t j  
k-1 m-Om-0 k-1 m-Om-0 

i m  jngrnn, 

where the prime denotes direct stiffness summation for the global system to ensure 
that the ensemble is performed in space H1. The z-component, for example, of the 
Poisson operator is defined as follows: 

p z . k  - 
mn - Ppg Jig[(rz)& Dpi Dpm ang + (SzIig Dgj Dgn amp 

+(rz~z)pgDptDgn a m p +  (rzSz)pgDgjDpm &,,I* (1’’) 

Here the derivative operator is defined as D,, = (dh,/dz) (5,) ; all other parameters 
have been defined previously. The mass matrix B: is diagonal and is defined as 
B: = ~$6,. The y-component of the Poisson operator is defined similarly. 

The natural choice of solution algorithm for (1 1 a) is an iterative procedure ; both 
conjugate gradient techniques and multigrid methods have been implemented for 
elliptic equations (Rsnquist 1988). For the spectral element-Fourier algorithm the 
use of a parallel static condensation solver enhances the efficiency even further (see 
(Chu et al. 1991). The advantage of the formulation proposed here compared to the 
formulation proposed by Rsnquist is that the high-order splitting scheme results in 
separate, elliptic equations for the pressure and velocity that can be very efficiently 
and robustly solved using those iterative techniques without the need of case- 
dependent preconditioners or other convergence acceleration techniques. 

2.3. Simulation tests 
Before we proceed with the numerical investigation of the three-dimensional flow, we 
first report on some tests we performed to assess the influence of the computational 
domain. To this purpose we used the domain of figure 2(b) to compute the two- 
dimensional flow a t  Reynolds number of 100, for which we have extensive results 
obtained using domains of different size both in the x- and y-directions, as well as 
different numbers of elements and orders of interpolation. An additional objective is 
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BC on a r ,  
periodicity 
periodicity 
periodicity 
potential 
potential 
potential 
potential 
periodicity 

XO 
27 
70 
36 
27 
57 
27 
27 
50 

xi 

-6  
- 24 
- 24 

-6  
-6  
- 12 
- 12 
- 10 

Y 

6 
24 
24 

6 
6 

12 
7 

10 

St 

0.204 
0.168 
0.168 
0.188 
0.188 
0.174 
0.182 
0.179 

TABLE 1 .  The periodic boundary condition compared to Dirichlet boundary conditions 
corresponding to the potential flow solution 

to investigate the discrepancy in Strouhal number between our earlier computations 
(Karniadakis & Triantafyllou 1989) and the experimentally measured values 
(Williamson 1989; Hammache & Gharib 1989). 

The size of a two-dimensional computational domain around a cylinder is 
described by three characteristic dimensions : (i) the outflow length X, which specifies 
where the downstream boundary is located ; (ii) the inflow length Xi which specifies 
where the inflow boundary is located; and (iii) the half-width of the domain (size in 
the y-direction) denoted by Y .  The periodicity boundary condition imposed along the 
side was also tested and compared to Dirichlet boundary conditions corresponding 
to  the potential flow solution. The results are summarized in table 1, while a typical 
spectral element mesh more refined than the one shown in figure 2 ( b )  is shown in 
figure 2 ( c ) .  For this mesh and domain D, (X, = 70;  Xi = Y = 2 4 )  the corresponding 
Strouhal frequency is St = 0.168; this value remains unaffected if the shorter domain 
D,  is employed in the simulation. The experimental value a t  this Reynolds number 
is obtained using the empirical formula of Williamson (1989, equation (6)) is 
St = 0.165, and thus there is a discrepancy of approximately 1.5%; our earlier 
simulations corresponding to domain D, (Karniadakis & Triantafyllou 1989) gave 
St = 0.179. 

A simulation was next performed using the domain of figure 2 ( b ) ,  with the 
potential flow solution imposed as boundary condition a t  the sides (domain D3).  The 
difference in frequency with the one obtained from domain Do (that used in the three- 
dimensional simulations) is about 7 %. This frequency remains unaffected even if a 
much longer domain D, with X, = 57 is used, consistent with our previous results for 
the wider domains (D,, D,). Further experimentation with variations in the inflow 
length and the width of the domain (D4-D,) indicate that decreasing the inflow 
length increases the value of the Strouhal number. Finally, a simulation was 
performed using the same domain, but with higher resolution per element (9 x 9) and 
smaller time step At, and gave identical results. This last test confirms that the 
discrepancy between experiment and computation is caused, barring measuring 
errors in experiments, by the size and shape of the computational domain, not by 
inaccuracies of the spectral element scheme. 

From table 1 ,  it  can be verified that the domain chosen for numerical expediency 
introduces an error in the vortex-shedding frequency of around 15%. Shifts in the 
values of critical Reynolds numbers (i.e. Reynolds numbers marking flow 
bifurcations) caused by the size of the domain are more difficult to assess. Judging 
from the critical Reynolds number for the onset of three-dimensionality, i t  would 
appear that the shift also lies within the same margins of error: our numerical 
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estimate of that value is between 200-210 (see §3), whereas the experimental value 
(Williamson 1988) is around 180. 

Having discussed the numerical methodology employed in the current investi- 
gation, we now analyse the results of the three-dimensional simulation. Both full 
three-dimensional and spectral elementrFourier discretizations were used ; the latter 
is more efficient than the former, resulting in savings in CPU time of more than one 
order of magnitude. Sixth- and eighth-order interpolants (Nl,  = 7,9) were used in 
the spectral elements, and N3 = M = 16 modes in the spanwise direction (some tests 
were also performed with M = 32 modes; Tomboulides 1992); the number of 
elements was kept constant for the three-dimensional simulation (K = 34). The 
corresponding CPU requirement is approximately two seconds per time step on a 
single processor CRAY-Y/MP. 

3. Onset of three-dimensionality 
3.1. Numerical experiments 

The onset of three-dimensionality was investigated first, by expanding the findings 
of our previous three-dimensional simulation (Karniadakis & Triantafyllou 1990). 
The flow past a cylinder a t  Re = 225 was thus computed, and three-dimensional noise 
was subsequently introduced. The noise was introduced by temporarily increasing 
the tolerances in the pressure and velocity residual, equations (5 ) .  After some initial 
transient the tolerances were reduced to machine accuracy. The subsequent evolution 
of the flow was followed through direct simulation of the three-dimensional 
NavierStokes equations. The spanwise, i.e. parallel to the cylinder axis, component 
of the instantaneous velocity was used as a measure of the three-dimensionality of 
the flow. (In a two-dimensional flow this component is equal to zero.) More precise 
measures of three-dimensionality can also be used to determine the exact location 
where it sets in (see Kaiktsis et al. 1991) ; however, we have found that monitoring 
the evolution of the spanwise velocity component as a function of time leads to the 
same conclusions. 

The rationale behind the excitation procedure is as follows. At  below the critical 
Reynolds number, the two-dimensional vortex street is the only attracting limit 
cycle, and the perturbed flow always returns to it. Above the critical Reynolds 
number, other attracting limit cycles exist, oscillating around spanwise modulated 
average flows. The perturbed flow will thus be attracted to these three-dimensional 
states, in the process causing a spanwise simulation of the time-average flow. 

A t  Re = 175, the noise dies out, and the flow asymptotically returns to its two- 
dimensional state, indicating that no secondary instability is present (see figure 
3a, b ) .  At Re = 225, however, the noise is amplified in time and evolves into a coherent 
three-dimensional pattern (figure 4, plate 1) ; the presence of a secondary instability 
can thus be inferred. The time-evolution of the spanwise velocity component shows 
the action of the secondary instability best : out of an initially random noise, one 
specific pattern is selected through exponential amplification in time (figure 5 b ) .  The 
growth of the instability is saturated by nonlinearities, and the flow settles into a 
periodic limit cycle. The time trace of the w-component close to the centreline in the 
wake (figure 6 a )  shows the presence of the fundamental frequency and its higher 
harmonics. The other two components show mainly the presence of the Strouhal 
frequency, as can be seen for example in the time trace of the streamwise component 
(figure 5a ,  6 b ) .  The secondary instability results therefore at  this Reynolds number 
to a switching from a two-dimensional to a three-dimensional mode of self- 
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FIQURE 3. Time history of the velocity components at x = 2.0; y = 0.15; z = 0 and Re = 175; 
/3 = 2.0. (a) Streamwise and ( b )  spanwise components. 

oscillation. In laboratory experiments, where the velocity is slowly increased as a 
function of time, hysteresis phenomena are possible for Reynolds numbers around 
200 (Williamson 1988). For a sufficient slow increase in the velocity, which also 
implies slow variation of the Reynolds number, the secondary instability may be 
delayed. Then the flow will remain two-dimensional even above Re = 175, but as the 
velocity is further increased, the flow suddenly 'jumps ' into its three-dimensional 
mode. (Similar hysteresis phenomena can occur if the Reynolds number is lowered.) 
We have not, however, observed such hysteresis phenomena in the current 
simulations. 

Finally, this simulation was repeated with the wider domain corresponding to 
spanwise wavenumber /3 = 1.  The main finding is that the three-dimensional limit 
cycle remains essentially unaffected by the spanwise size in this range of Reynolds 
numbers. In  particular, we found a limit cycle a t  Re = 210, 220 and 225. However, 
a t  Re = 200 the spanwise oscillations decayed to zero ; it  is thus concluded that, for 
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FIGURE 4. Instantaneous colour contours of the streamwise velocity field on the (x, z )  centreline plane 
(Re=225). 

FIGURE 13. Instantaneous colour contours of the streamwise vorticity on a (y, z)-  plane at x=7 (Re=300). 

KARNIADAKIS & TRIANTAFYLLOU (Facingp. 12) 



Journal of Fluid Mechanics, Vbl. 238 Plate 2 

FIGURE 18. Instantaneous pressure iso-surface coloured according to the spanwise velocity magnitude 
(Re=500). 

FIGURE 22. Instantaneous streamlines of the three-dimensional vortex street at Re=500, (a) in the near-wake 
and (6) far downstream. 
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FIGURE 5. Time history of the velocity components at x = 2.0; y = 0.15; z = 0 and Re = 225; 
= 2.0. (a) Streamwise and (6) spanwise components. 

the computational domain used in this study, three-dimensionality first appears a t  
a Reynolds number between 200 and 210. The exact value of the critical Reynolds 
number, Re:”, above which three-dimensionality sets in is computationally very 
expensive to  obtain using direct numerical simulation. The construction of low- 
dimensional models, however, from the direct simulation data in conjunction with 
the use of modern numerical bifurcation techniques could potentially be an effective 
approach in computing Re:D (work in progress) ; this approach was followed recently 
by Deane et al. (1991) in studies of two-dimensional bifurcations in wake flows. 

3.2. Instability analysis 
The final three-dimensional flow pattern can be described as the absolute instability 
mode of its time-average Jlow. Assuming nearly parallel flow, the instability modes 
have the form of travelling waves in the streamwise direction, with an eigenfunction 
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FIQURE 6. Steady-state response at Re = 225 (three-dimensional simulation) at point PI. Time 
history of (a) w-component ; (a) u-component. 

dependence in the other two directions. By substituting perturbations of this form 
into the equations of motion and continuity, linearized around the modulated time- 
average flow, the dispersion relation is obtained. The resulting equations are 

along with the continuity equation 

av/ awf 
ay a2 

iku’+-+- = 0. 
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Vortex filament 

Average flow 
FIGURE 7. Qualitative description of the spanwise flow structure in the near wake at slightly 
supercritical states using vortex filaments. Curve (a) corresponds to time-average flow ; curve ( b )  
corresponds to the perturbation field. 

Here, we denote the perturbation field by the vector (u’, v’, w’), and the Laplacian 
operator Vi, is defined as in (4b). The time-average velocity is denoted by U(y, z ) ,  k 
is the streamwise wavenumber, and w is the frequency of the instability wave. 

Equations (12)’ subject to the periodicity condition in the z-direction, and the 
constraint that the perturbation vanishes at the boundaries of the flow in the y- 
direction, define an eigenvalue problem for the frequency w ,  once the wavenumber k 
is specified. The problem can be solved numerically to determine the frequency w as 
a function of the wavenumber k. Then, the ‘pinch-points’ (Bers 1983) of the 
dispersion relation can be obtained by mapping the complex k-plane into the 
complex w-plane, as discussed in Triantafyllou et al. (1986). Classification of the pinch 
points will identify the character of instability that produces the three-dimensional 
pattern. This procedure is however very cumbersome for the problem at hand, since 
it requires the solution of several high-order eigenvalue problems. A much simpler 
approximation can be derived, assuming a weak modulation of the time-average flow 
in the spanwise direction, which has the advantage of better elucidating the physics 
of the problem. This can be done by approximating the actual mode by a slowly 
varying mode in the spanwise direction, using the following procedure (Triantafyllou 
1990). At Reynolds numbers very close to the onset of the secondary instability the 
time-average flow has the following form: 

U(Y’Z) = ~ O ( Y ) + ~ l ( Y ) C O S ( P ~ ) ~  (13) 
where u1 is much smaller than Uo in magnitude. Consequently, the derivatives of U 
with respect to z are one order of magnitude smaller than the derivatives of U with 
respect to y. We can, to a first approximation, neglect the derivatives of U with 
respect to z ;  this assumption is valid at  a state slightly above criticality. In  this case, 
the equations above can be combined into the classical OrrSommerfeld equation for 
three-dimensional perturbations (Drazin & Reid 1981), with the important difference 
that the base velocity U is a slowly varying function of the coordinate z. 

We can therefore talk of ‘less’ unstable flow regions, where the flow reversal in the 
wake is smaller, and ‘more ’ unstable flow regions, where the flow reversal is stronger. 
These regions can be identified by solving the OrrSommerfeld equation for a given 
wavenumber at various locations, and then plotting the growth rate of the 
OrrSommerfeld equation as a function of z. The resulting growth rate will follow the 
modulation of the time-average flow, as schematically shown in curve (a) in figure 7. 
Because of Squire’s transformation (Squire 1933)’ the only way that a single- 
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FIGURE 8. Spanwise variation of the streamwise velocity component in the near wake (z = 2.0; 
y = 0) and Re = 225. (a)  Time-average field a, ( b )  perturbation field u' = u--4. Here u(z, y, z, t )  is the 
instantaneous streamwise velocity component. 

z-Location Frequency Growth rate 

1 1 .0 0.242 0.1703 
2 1.5 0.237 0.1661 
3 2.0 0.247 0.1731 
4 2.5 0.240 0.1693 

TABLE 2. 'Pinch-point' of dispersion relation a t  different z-locations (z = 2.0) corresponding to 
the time-average three-dimensional flow at  Re = 225 

frequency three-dimensional pattern can satisfy the slowly varying OrrSommerfeld 
equation throughout the span is by being two-dimensional in the least unstable flow 
regions, in order to  achieve the maximum local growth rate, and by being sufficiently 
three-dimensional in the more unstable flow region so that i t  can have the same 
growth rate and frequency as in the less unstable region. I n  fact, the maximum 
transverse wavenumber will appear a t  the most unstable flow location. The spanwise 
variation of the instability mode is schematically plotted as curve (b )  in figure 7, 
where the aforementioned relation between the maxima and minima of the growth 
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2 

FIQURE 9. Spanwise variation of the streamwise velocity component at x = 10; y = 0 and 
Re = 225. (a) Time-average field ti, ( b )  perturbation field u’ = u-fi. 

rate and the inclination of the instability mode can be seen. Figure 7 also shows that 
the spanwise wavelength of the perturbation flow is equal to twice that of the time- 
average flow. 

We thus have the interesting conclusion that the dispersion relation of the 
modulated time-average flow can, to leading order in the modulation, be 
approximated by the dispersion relation of a fictitious two-dimensional flow at the 
location z = z, where the growth rate has a minimum. This also implies that the 
Strouhal frequency is determined by the pinch-point double-root of this approximate 
dispersion relation. Since the flow at z = z, is less unstable than the two-dimensional 
one at the same Reynolds number, this implies that the Strouhal frequency of the 
three-dimensional mode is lower than that of the two-dimensional flow at the same 
Reynolds number, consistently with experimental findings (Williamson 1988). In 
other words, switching from the two- and three-dimensional mode of self-oscillation 
in the wake results in a sudden reduction in the Strouhal number. 

In order to verify this approximate in stability theory, we have looked at the 
instability properties of the wake as a function of the spanwise coordinate z. Thus 
with the streamwise distance x kept constant, and equal to one cylinder diameter, 
the time-average velocity was computed as a function of the coordinate y for four 
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FIGURE 10. Two-dimensional projection on the (r,  %)-plane a t  y = 0 of the vorticity vector field 
(Re = 225). 

values of z along the spanwise direction at Re = 225. At each location the pinch point 
of the dispersion relation was then computed, the latter consisting of the 
Orr-Sommerfeld equation with boundary conditions at the ends of the domain in the 
y-direction. The results are summarized in table 2. It can be seen that location 2, 
which is the least unstable of all four considered, gives St = 0.237, which is indeed the 
closest to  the value of 0.234 found from the numerical simulation. 

3.3. Spatial evolution of the time-average flow 
The spanwise variations of the time-average and the perturbation flows in the near 
wake are compared next (figures 8 a  and 8 b ,  respectively). The basic wavelength 
of the time-average flow is equal to half of that of the perturbation flow. 
Furthermore, the instantaneous flow is straight behind the regions corresponding to 
extrema of the time-average flow, in agreement with the linear instability arguments 
given above. The slight discrepancy in the peak values of velocity amplitude across 
the span is due to  both time-averaging and spatial errors (Legendre expansions used 
along the spanwise direction in this computation). The use of Fourier expansions 
along the spanwise direction alleviates this discrepancy significantly (Tomboulides 
1992). 

The next question to  consider is how far downstream this relation persists, since 
wavy vortex filaments tend to substantially change their form as they progress 
downstream (see also Meiburg & Lasheras 1988). The metamorphosis of the 
instantaneous flow will also alter the time-average flow through the action of the 
Reynolds stresses. The downstream evolution of the time-average flow in the present 
simulation showed a gradual change in the spanwise structure. At approximately five 
diameters downstream, the time-average flow (figure 9 a )  has very different structure, 
while the perturbation flow retains its near-wake form (figure 9 b ;  see also figure 4). 
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As far as the space-time development of the flow is concerned a very important 
issue is the effect of the mechanisms of stretching and tilting of the vortex filaments, 
which in two-dimensional wakes are simply straight lines. Such issues are related to 
the development of spatial chaos, and the question is whether they play such a role 
in the wake. To assess the importance of these mechanisms, plan views of the vortex 
filaments, i.e. their projections on an (2, 2)-plane, were computed. In  figure 10 the 
projected vorticity field is visualized from the rear edge of the cylinder (z = 1) to the 
outflow. It is seen that the vorticity vectors are indeed wavy in the 2-direction in 
the near wake, while further downstream they form rib-like structures, similar to the 
ones observed in compressible planar wakes (Chen et al. 1989) and shear layers 
(Metcalfe et al. 1987) (see also $4). These changes in form are tied to changes in the 
form of the time-average flow. The stretching and tilting mechanisms do not seem to 
affect the temporal periodicity of the flow, since the state of the flow remains periodic 
in the far field. This is indicated more clearly in figure 4 where we plot the spatial 
structure of the instantaneous u-velocity field. 

4. The first period doubling 
The flow a t  Re = 300 was next computed starting from the three-dimensional field 

obtained at Re = 225. The integration continued for a long time until transients 
between the two flow states were eliminated. At the new Reynolds number the flow 
has undergone a bifurcation that leads to a periodic state with a period of oscillation 
twice the fundamental one, present at  Re = 225. This is exhibited best by the time 
trace of the w-component (figure l la) ,  which has a strongly modulated form, and to 
a lesser extent by the time traces of the other two components, which exhibit a 
weaker modulation (see for example the u-component in figure i lb ) .  The power 
spectra of these two signals, shown in figures 11 ( c ) ,  11 ( d )  respectively (the spectrum 
of the v-component is very similar to that of u), reveal the presence of several 
frequencies, and most notably, that of a subharmonic. The spectrum of the w- 
component contains a very strong subharmonic peak, whereas the u, v velocity 
spectra contain a rather weak peak at the subharmonic. The phase-space plot of the 
three velocity components plotted against each other (figure 12a, b )  shows the 
branching of the limit cycle that was present at Re = 225 into two stable limit cycles. 
The latter appear in the (u, v, w)-space as nearly planar curves lying on different 
planes. 

The occurrence of a period doubling can be explained as follows. From the sketch 
in figure 7 it is clear that, once the secondary instability is triggered, there are two 
possible three-dimensional modes, which are equally acceptable. The first has the 
spanwise modulation shown in figure 7, and the second has the modulation of the first 
shifted by half a wavelength. It can readily be seen that this shifting preserves the 
relation (see the discussion in $3) between the maxima and minima of the local 
growth rate and the inclination of the vortex filaments. The period doubling is 
therefore caused by the fact that the flow alternates between these two states, and 
its period doubles. In  the physical space, a vortex filament like the one in figure 7 is 
produced, then one (Strouhal) period later the alternative filament is produced, i.e. 
the filament of figure 7 shifted by half the spanwise wavelength, and one (Strouhal) 
period later the filament of figure 7 is produced again. The time required for a full 
cycle has thus doubled. In the phase space (figure 12), the two alternative states are 
the two out-of-plane curves, symmetric around the w = 0 plane. 

It is worth mentioning that the period-doubling bifurcation does not lead to vortex 
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merging, and the wake retains its basic spatial structure. I n  contrast, in the 
apparently similar flow of a two-dimensional jet, the appearance of a subharmonic 
does imply vortex merging, as found by Batcho, Karniadakis & Orszag (1990). We 
attribute the difference to the fact that vortex merging is basically a two-dimensional 
subharmonic instability phenomenon, which is present in jet and shear layer flows 
but not in wakes. The spanwise flow structure can be best visualized instantaneously 
using contours of streamwise vorticity w, : in figure 13 (plate 1) colour contours of w, 
are plotted a t  approximately three cylinder diameters downstream of the cylinder 
centre. The rib-like structure shown in figure 10 a t  Re = 225 is more clear a t  this 
Reynolds number (Re = 300). 

Finally, in order to  investigate the effect of the width of the domain on the period- 
doubling bifurcation, the computation was repeated using a domain twice as wide 
(L, = 2n).  The presence of the subharmonic in the spectra of the velocity fluctuations 
can be detected again (figure 14). The important difference of the computation using 
the wider domain is that three-dimensionality has been increased, in the sense that 
the amplitude of the w-component has been increased. 
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FIGURE 11. (a) Time-history of w-velocity at P, and Re = 300. (a) Time-history of u-velocity at PI 
and Re = 300. (Only a portion of the total time-traces are shown here.) (c) Power spectrum of trace 
plotted in (a). ( d )  Power spectrum of trace plotted in (b). 

5. Transition to turbulence 
The Reynolds number was next increased to 333, and the three-dimensional flow 

computed as previously described starting from the velocity field at Re = 300. The 
narrow domain was used in the computation for better resolution. Power spectral 
density plots of the velocity fluctuations at the same point as for figure 14 are shown 
in figure 15(a-c). The presence of a second period-doubling bifurcation can be 
detected, again more visible in the spanwise component w. The spectral densities 
following the second period-doubling bifurcation become considerably more 
wideband than at Re = 300. The phase-space plot (figure 16) in the (u, v, w)-space 
shows four limit cycles lying on different planes. The trajectory also seems to form 
'cusp ' points, indicative of a folded attractor. 

For the computational domain considered here, the wake at Re = 333 is 
transitional. In  order to reach the turbulent regime, the Reynolds number was 
subsequently increased to 500. The computation was continued for over twenty 
periods of oscillation (based on the Strouhal frequency). The power spectra of the 
u-, v- and w-velocity components are shown in figures 17(a), 17(b), and 17(c), 
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FIGURE 12. (a) Three-dimensional (u, v, w) phase portrait of the velocity at point PI and 
Re = 300. ( b )  Two-dimensional projection (u, w) of point PI. 

respectively. The w-component exhibits a wideband spectrum, with considerable 
low-frequency energy content. The v- and u-component spectra also show wideband 
form, with the Strouhal frequency prevailing. The spectra indicate that the flow is 
chaotic at this Reynolds number. (The fact that this flow state appears to lie at the 
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FIQTJRE 14. Power spectrum of w-component in a wide domain (L, = 2%) at PI and Re = 300. 
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FIQURE 15. Power spectra of the velocity at point PI and Re = 333: (a) u-component, 

( b )  v-component, (c) w-component. 

'end ' of a period-doubling cascade further supports this.) The strong presence of the 
Strouhal frequency in the spectra, lying well above the background noise, suggests 
that, despite the chaotic character of the flow, a coherent pattern (the three- 
dimensional vortex street, figure 18, plate 2) is still present, sustained by the absolute 
instability of the time-average flow. 
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FIQURE 19. Streamwise time-average velocity profile at x = 2.0; z = 1.0 and Re = 500; a second 
inflexion point has been formed. 
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FIQURE 20. Three-dimensional phase portrait of velocity vector at PI and Re = 500. 

The stability of the time-average flow in the near wake was analysed (location 
z = 2, z = 1). The plot of the time-average velocity at  this location as a function of the 
coordinate y (figure 19) shows that a second inflexion point has been formed (verified 
by considering the first derivative of the profile), because of the growth of 
the separated shear layer. Despite the appearance of the second inflexion point, the 
Rayleigh equation for this flow has only one unstable mode, that associated with the 
vortex street as we verified numerically. Work in progress leads us to believe that the 
shear layer becomes unstable a t  a higher Reynolds number as the negative growth 
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FIQURE 21. Time trace of streamwise velocity component at x = 1.91 ; y = 0.12) in the near 
wake; Re = 500. 

rate a t  this Reynolds number tends to positive values as Reynolds number increases. 
(See also the experiments of Bloor 1964; Unal & Rockwell 1984.) The time-average 
flow is absolutely unstable, yielding a Strouhal number equal to 0.258, which agrees 
remarkably well with the value obtained from the numerical simulation 
(St = 0.2596). This underlines the significance of hydrodynamic instabilities of the 
time-average flow field in generating large-scale patterns in a chaotic flow. It 
provides further support for the results in Triantafyllou et al. (1986) (obtained from 
the analysis of experimental results at a much higher Reynolds number) that the 
absolute instability of wake flows persists in the turbulent regime too, and can 
account for the frequency of formation of the large-scale vortices. 

The phase-space plot (figure 20) has an extremely tangled form; despite this 
complexity, the homoclinic trajectory corresponding to the first period doubling is 
still visible, suggesting that traces of the transition process still play some role in the 
dynamics of the chaotic flow. Intermittency and bursting phenomena were also 
observed at this Reynolds number. In figure 21 the time trace of the streamwise 
velocity component shows periods of almost periodic behaviour interspersed with 
periods of apparently random behaviour. It is clear therefore that the flow a t  this 
Reynolds number has some of the characteristics that are attributed to turbulence, 
namely the broadband spectra of the fluctuations and the presence of intermittency. 

In  order to characterize the flow as turbulent, however, the appearance of spatial 
chaos is also necessary. This, in general, requires the computation of particle paths, 
in order to demonstrate exponential divergence of fluid particles, as well as the 
computation of mean turbulence intensities over a long time period. In  this paper the 
simpler, but less decisive, alternative of computing instantaneous streamlines has 
been followed. The spatial evolution of various instantaneous streamlines is shown 
in figure 22 (a ,  b)  (plate 2) : a complicated three-dimensional structure develops in the 
near wake, with substantial flow parallel to the axis of the cylinder. The streamlines 
in the spanwise direction are wavy, and twisted close to the ends of the domain 
(figure 22a); further downstream the streamlines have the typical structure of a 
three-dimensional vortex street (figures 22 6 and 18). The spatial structure of the flow 
at Re = 500 exhibits therefore the highest complexity of all cases considered in this 
paper. We cannot decisively conclude, however, whether the flow is turbulent or not ; 
computation of particle trajectories and mean statistics will be required to finally 
resolve this issue. 
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6. Discussion 
The main finding of the present work is that the route to chaos in the wake formed 

behind circular cylinders follows the general lines of Feigenbaum’s (1978, 1979) 
period-doubling scenario. This is very encouraging for the applicability of this simple 
idea to flows in complex geometries, in a manner similar to that in ‘simple flows ’ (as 
for example in Libchaber & Maurer 1982). In  the present problem, the period- 
doubling process was found to originate in the near wake. This is based on the fact 
that power spectral densities downstream do not exhibit any subharmonics 
additional to those present in the near wake. The appearance of the period doubling 
can be attributed to the fact that two three-dimensional absolute instability modes 
are possible for the same time-average flow, and thus the flow alternates between 
them, doubling the time that is required to repeat itself. 

A subject that deserves further attention is how closely the transition process 
follows Feigenbaum’s theoretical scenario, which is one of the universal routes to 
chaos. In  the present computation the one-half, one-quarter, and one-eighth 
components of fundamental frequency have been detected. A more detailed 
investigation seems currently a formidable task, requiring an enormous amount of 
computation, since extremely long time traces of the velocity fluctuations are 
required to reliably detect the presence of high-order subharmonics, and the 
magnitude of their spectral peaks. Thus Feigenbaum’s (1978, 1979) scaling laws still 
await verification. 

From the numerical experiments reported here it would appear that the period- 
doubling bifurcations in the wake are best seen in the spanwise velocity component. 
Thus, since only streamwise velocity components have been recorded in experiments, 
this might explain why the period-doubling cascade has remained undetected so far. 
Another possible reason is the difficulty of suppressing the three-dimensionality 
introduced by the end effects in Reynolds numbers over 200. End effects are in 
physical experiments unavoidable, and can induce three-dimensionality before the 
onset of the secondary instability. It is not clear whether end effects can suppress the 
period-doubling process, but it seems plausible that they can obscure its presence by 
introducing additional low-frequency spectral peaks (Williamson 1989 ; Konig, 
Eisenlohr & Eckelmann 1990). We note however that the ‘low frequency 
fluctuations’ observed by Bloor (1964), could be due to the period-doubling process. 

The question of how the size of the computational domain as well as the resolution 
parameters influence the current findings is an important one. First, we have shown 
in table 1 that the size of the computational domain in the (3, y)-plane can alter the 
values of the Strouhal frequency ; qualitatively, however, the vortex street retains its 
classical form and certainly there are no additional bifurcations introduced due to the 
relatively small domain size. The selection of the spanwise length L, is also an 
important one : the spanwise structures visualized in the experiments of Hammache 
& Gharib (1989), and Williamson (1989) seem to extend over seven cylinder 
diameters. These structures, however, are caused by the presence of boundaries in 
the spanwise direction, and are not present in our computations, where the geometry 
is perfectly two-dimensional. 

The computational tests performed in this work use two values of L, (n and 2n), 
which correspond to a spanwise wavenumber of order one, around which the 
maximum growth of secondary instability is attained (Orszag & Patera 1983). We 
have found that our results as monitored in terms of time traces (and corresponding 
power speetra) as well as through flow visualization are the same for two of the 
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domains and Re = 225 and 300 where we carried out both computations. In  
particular, even the narrow domain allows the development of instantaneous flow 
structures that extend over two wavelengths in the span, while the corresponding 
time-average flow structures extend over four wavelengths (see figure 8). It is clear 
therefore that the wavelength in the spanwise structure is considerably smaller than 
the span of the domain L,, and we can conclude that the computational results have 
not been seriously influenced by the choice of L,. 

As far as resolution requirements are concerned, computations with higher-order 
Legendre polynomials in (2, y)-planes as well as preliminary computations with a 
larger number of Fourier modes in the z-direction (M = 32, Tomboulides 1992), 
confirm the results reported in this paper. Moreover, recent work on the minimum 
spectral resolution requirements for simulating turbulence in channel flows (Zores 
1989) has systematically documented that only four and six modes employed in the 
streamwise and spanwise directions respectively suffice in order to  sustain turbulence 
fluctuations and predict the dynamics correctly in a much higher Reynolds number 
range (Re > 3000) ; the spectral resolution employed in the current simulations by far 
exceeds these requirements. 

In  summary, the behaviour of wake flows at Reynolds numbers in excess of 200 is 
inherently three-dimensional. In fact, the results of two-dimensional simulations a t  
Re = 500 (figure 1) show such a striking difference with those of the three- 
dimensional simulation, and with experiments, that one has to wonder whether there 
is any point in performing two-dimensional simulations of wake flows after the onset 
of three-dimensionality. To quote Morkovin (1964), two-dimensional flows for all 
their computational and conceptual convenience seem to be part of a ‘ comfortable 
dream world ’. 
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